
 

lecture

we'll prove the orbit stabilizer theorem in this

lecture Let's see why should the theorem be

true Below we'll find the number of
rotational symmetries of a cube in two different

ways We'll see later that both of them are

actually versions of the orbit stabilizer theorem

Rotationalsymmetriesofacubey

Recall from our discussion of the dihedral

group that a symmetry of an n gon is a

transformation which mightchange the places

of vertices and edges but doesn't change the

shape of the n gon



But we can do the same thing with a cube

let G be the group of rotational symmetries

of a cube
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so for example the above figure demonstra
tes the rotation of the cube by 90 in the
counterclockwise direction along the asu's shown

in red The position of the vertices changed

but the shape and size of the cube didn't

So this is an example of a rotational

symmetryof the cube We want to find out the

of all such symmetries i e I Glo



Of course you can just find it by brute force

However we will be smarter for atleast pretend
to be and calculate it combinatorially which

we'll see to be basically using the Orbit

Stabilizer theorem
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Consider the face F of the cube containing
the vertices a b c d If we perform any
rotational symmetry of the cube the face
f might change its position Since there are

6 faces in a cube so the of places



where F can co 6

Now since we cannot change the shape
and size of the cube the vertices a bro d

of the face f i only have the liberty to
move among themselves So once F has chosen

its place there are a total of 4 rotations

which will keep F fixed beet permute the
vertices among themselves
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and similarly
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In all the above figures the face F is at

the same place only the position of its
vertices are changing
But any rotational symmetry of the cube
will do the same thing So there are a total

of 6 4 24 rotational symmetries
p I GI 24



Methods

In method 1 we worked with a face Here
let's work with a vertex Suppose we

choose a vertex a in the cube Following

any rotation a'has 8 choices to move

around But since the rotation must be a

symmetry the immediate neighbour vesti

ces of a b d and e must be

attachedto it and can only move amongthemselvesSo once a has chosen a position its

immediate neighbours have 3 choices and

hence for a rotational symmetry there are

8 3 24 choices So again
161 24



Now how does the Orbit Stabilizer theorem

relates to finding 1Gt

Let G group of rotational symmetries of the
cube

of set of faces of the cube
and consider the action of G on f by taking
a rotational symmetry and a face say Fi apply
the rotational symmetry to the cube and look

at place which F takes which 8 again
going to be some face of the cube and hence

lies in F

What is OfI This is just the path which
f takes under the action by G but it is

just the of choices for F 6

What is 1 Stab Fil Well F will be stabilized

under the action is the rotation doesn't



change the position of f But it can still

change the position of vertices of F and hence

I stab CFD 4
Since the O S theorem says 161 1Of I IstabCFi

D IG k 6 he 24

So method I 8 just apply the orbit stabilizer
theorem to a particular action of G
But we can do the same thing in method

2 Take G as it is and now consider

the set as V set of vertices of the cube
The action of G on v is just pick a vertex

say a act it by the rotational symmetry
and look at it's new position which will

again be in V One can find by a similar

reasoning as abone that IOal 8 and

I stab a I 3 I G Italo Stabia 1 24



So now that we have seen some applications

of the O S Theorem let's now prove it

theorem Orbit Stabilizer Theorem

Let G be a group which acts on a set X

Let see X Their G Stabex 10 1 If
G is finite then 10 1 IGI IG1 10 11Stab

Istabbed

Proofe Consider the set C g Stabex g c G

the set of all left cosets of Stabex in G

Ox g se I g e G Define a map

To C Ox by
1 g stab Cx goose

We must check that TEs well defined recall

Principle 2 as it is map from the set of



Cosets

Tiswelldefinede
Let g stab Cx h stab x D h g StabCx

Stab Cx o_O h g c Stab x

p h 1g se se

h lo g x se from point 2 in the

definition of a group
action

We can act by he G on both sides of the
above equation

h h lo g x hose p e g a hose

D Gose hose

p T g stab Cn T hstab.cn

and hence 1 is well defined

Tisoneonly



Let Tcg Stab Cx TChstabcx

g se hose

h lo g se h lo hose e se

h 1g se x h g e Stabex

by the definition of stab Cx

h g Stabex Stab Cx

D g stabCx h stab se

and hence T is one one

Tisontolet
y c Ox F g e G s.to yag.se

Consider the coset gstabcx c C Then by the
definition of T

7cg stab Cx gorse P Tis onto

So T is a bijection b w C and Ox



But ICI G Stab

Go Stab I 10 1

If G is finite G stab I 1Gt
stable

I Gl I stab 1 I 0 1

I

Qemark Note that the O S Theorem holds

for any group G with any action on

any set X

So for example if G acts on itself by
conjugation the we saw in here 23 that

stab g Clg the centralizer of g ni G
Thus in that case

G Ccg l Ogl



As an application of the O S Theorem let's

reprove Lagrange's Theorem

hagrangestheoree If G is finite and HE G
IHl 11Gt

Proof Let C gH I g e G be the set

of left cosets of H in G Consider the

action of G on C by
G x C s C
se gH a ng H

i e multiply the group elements se and g
and consider the coset containing ng
Consider the element H e C

Stab H NE G I n H H

see G I se H Heo see H

H



So under this action StabCH H

But from the O S theorem as G is finite
1Gt 10 11 Stab H l I stab CHII IG
IHI 1Gt

Me

So as you can see we'll choose our set

X as per our need and the action will be

chosen accordingly Then we can use the O S

Theorem to prove powerful theorems
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